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1. Introduction

Purpose: To evaluate whether semi-quantitative analysis of high temporal resolution dynamic contrast-
enhanced MRI (DCE-MRI) acquired early in treatment can predict the response of locally advanced breast
cancer (LABC) to neoadjuvant chemotherapy (NAC).
Materials and Methods: As part of an IRB-approved prospective study, 21 patients with LABC provided
informed consent and underwent high temporal resolution 3 T DCE-MRI before and after 1 cycle of NAC.
Using measurements performed by two radiologists, the following parameters were extracted for lesions at
both examinations: lesion size (short and long axes, in both early and late phases of enhancement),
radiologist's subjective assessment of lesion enhancement, and percentages of voxels within the lesion
demonstrating progressive, plateau, or washout kinetics. The latter data were calculated using two filters,
one selecting for voxels enhancing >50% over baseline and one for voxels enhancing >100% over baseline.
Pretreatment imaging parameters and parameter changes following cycle 1 of NAC were evaluated for
their ability to discriminate patients with an eventual pathological complete response (pCR).
Results: All 21 patients completed NAC followed by surgery, with 9 patients achieving a pCR. No
pretreatment imaging parameters were predictive of pCR. However, change after cycle 1 of NAC in
percentage of voxels demonstrating washout kinetics with a 100% enhancement filter discriminated
patients with an eventual pCR with an area under the receiver operating characteristic curve (AUC) of 0.77.
Changes in other parameters, including lesion size, did not predict pCR.
Conclusion: Semi-quantitative analysis of high temporal resolution DCE-MRI in patients with LABC can
discriminate patients with an eventual pCR after one cycle of NAC.

© 2013 Elsevier Inc. All rights reserved.

confirmed that patients undergoing NAC have a lower risk of
requiring mastectomy (i.e., are more likely to qualify for breast

Neoadjuvant chemotherapy (NAC) is offered to selected
patients with locally advanced breast cancer (LABC) to reduce
tumor burden before surgery and to allow for possible earlier
treatment of occult micrometastatic disease [1]. Studies have
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conservation therapy) and have equivalent survival to patients
undergoing adjuvant chemotherapy [2,3].

With more breast cancer patients receiving NAC as a component
of therapeutic management, the need for noninvasive assessment of
treatment response has emerged as an important challenge for
imaging. Because NAC is typically given in multiple cycles over
several weeks, the ability to identify patients early in treatment who
are not responding to a particular chemotherapy would allow the
treating oncologist to discontinue an ineffective treatment (with
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potential short-term and long-term toxicities) and substitute an
alternative regimen. Additionally, since pathological response is
correlated with disease-free and overall survival [4,5], early
noninvasive response assessment may have similar prognostic
significance [6].

Prospective comparisons of different noninvasive imaging mo-
dalities have identified magnetic resonance imaging (MRI) as a
useful technique in the setting of NAC for breast cancer [7,8]. Among
different MRI approaches, dynamic contrast enhanced MRI (DCE-
MRI) is considered especially promising due to its ability to assess
changes in tumor vascularity in addition to changes in gross tumor
size. To the extent that gross tumor shrinkage may lag behind
changes in tumor vascularity in the context of a biological treatment
response, DCE-MRI may be able to predict response earlier than
techniques oriented exclusively toward tumor size.

DCE-MRI is an umbrella term used to describe a spectrum of MRI
techniques and analytic approaches including both quantitative and
semi-quantitative methods applied to data acquired via high and low
temporal resolution sampling [9]. The literature on DCE-MRI for
assessment of breast cancer response to NAC has evolved along two
main avenues of investigation: fully quantitative approaches using
different tracer pharmacokinetic models applied to high temporal
resolution acquisitions [10-14], and a variety of alternative ap-
proaches employing semi-quantitative analyses of low temporal
resolution/high spatial resolution images [15-18]. Both approaches
have their strengths: theoretical considerations and empirical data
suggest that diagnostic performance of DCE-MRI may improve with
increasing temporal resolution [19], but semi-quantitative ap-
proaches may offer greater reproducibility by virtue of their
simplicity, especially when deployed across multiple sites in a
large-scale clinical trial [20].

Given the relative advantages of these two approaches, and out of
consideration that a blended approach might offer enhanced
reproducibility while retaining the ability to characterize changes
in tumor vascularity with precision, we undertook this study to
investigate whether a semi-quantitative analysis of high temporal
resolution DCE-MRI data could provide useful early information
regarding breast cancer response to NAC. We employed a semi-
quantitative approach for kinetic curve type categorization similar to
one previously applied by other investigators for initial character-
ization of lesions as benign or malignant [21]. While others have
studied changes in tumor washout kinetics during preoperative
therapy [15], this is the first attempt to our knowledge to evaluate
whether a semi-quantitative analysis of high temporal resolution
DCE-MRI data can be used to predict pathological response after one
cycle of NAC.

2. Materials and methods
2.1. Patients and clinical protocol

Patients with pathologically proven LABC who were scheduled
to receive NAC were eligible for this IRB-approved prospective
study. After providing informed consent, patients underwent DCE-
MRI before and after one cycle of NAC. Human epidermal growth
factors 2 (HER2) positive patients received paclitaxel, carboplatin,
and trastuzumab every three weeks for six cycles. Most patients
with HER2 negative tumors received doxorubicin and cyclophos-
phamide administered every two weeks for four cycles followed by
twelve weekly cycles of paclitaxel, although a subset of patients
with “triple negative” disease (i.e., negative for estrogen receptor
(ER), progesterone receptor (PR), and HER2 overexpression)
received weekly cisplatin and paclitaxel combined with either
everolimus or placebo for twelve weeks as part of a separate

clinical trial. After NAC, patients underwent either mastectomy or
breast conservation therapy.

2.2. Pathological analysis

After surgery, specimens were evaluated for pathological treat-
ment response. A patient was classified as having had a pathological
complete response (pCR) to NAC if she had complete absence of
residual disease at the primary tumor site and complete absence of
disease in any resected lymph nodes. A patient was considered as not
having achieved a pCR if she had any residual disease at the primary
tumor site and/or residual lymph node disease.

2.3. MRI methods

Patients were screened prior to imaging to ensure adequate renal
function before administration of intravenous gadolinium contrast.
The study protocol specified a minimum estimated glomerular
filtration rate (eGFR) of 90 mL/min, with this value obtained within
30 days of imaging.

MRI was performed on a Philips 3 T Achieva MR scanner (Philips
Healthcare, Best, The Netherlands) using a 4-channel receive double-
breast coil (Invivo Inc., Gainesville, FL). High temporal resolution
DCE-MRI data were acquired using an RF-spoiled 3D gradient echo
multi-flip angle acquisition with TR = 7.9 ms, TE = 4.6 ms, a flip
angle of 20°, one signal acquisition, and a sensitivity encoding (i.e.,
SENSE) factor of 2 applied in the anterior-posterior direction.
Twenty sagittal slices were acquired with a slice thickness of
5 mm, in-plane field of view (FOV) of 22 cm?, acquisition matrix
of 192 x 192, and no interslice spacing. Dynamic scanning was
performed over 25 acquisitions with a temporal resolution of 16 s
per acquisition, for a total scan time of 400 s. The first three
acquisitions were unenhanced baseline scans; after the third
baseline scan, 0.1 mmol/kg (9-15 mL) of gadopentetate dimeglu-
mine (Gd-DTPA, Magnevist, Wayne, NJ) was administered through
an antecubital vein catheter via a power injector (Medrad, Inc.,
Warrendale, PA) at 2 mL/s, followed by a saline flush. An investigator
with over 10 years of experience in medical image registration (X.L.)
monitored cine loops of the dynamic frames to ensure that images
were not corrupted by patient motion.

2.4. Image analysis

Graphical user interface (GUI) software was constructed using
Matlab 2010a (MathWorks, Natick, MA) to display acquired images
and to facilitate data extraction (Fig. 1). Using the GUI software, two
board-certified radiologists (R.A. and T.H.), each with more than five
years of breast MRI experience, measured all lesions and drew
regions of interest (ROIs) around lesion volumes on the pretreat-
ment and post-cycle 1 image sets.

Data extracted for analysis included lesion size, perceived
enhancement, and semi-quantitative enhancement kinetics param-
eters. For lesion size, tumor measurements were made in long-axis
and short-axis using the slice on which the lesion appeared largest.
Following the methodology described by Loo et al. [17], measure-
ments were performed both during the initial phase of enhancement
(before 120 s) and during the late phase of enhancement (at 400 s).

For perceived enhancement, each radiologist performed a
subjective assessment of the percentage of lesion volume
demonstrating enhancement at each timepoint. Enhancement
was graded in quartiles as follows: less than 25% enhancement,
25% to 50% enhancement, 50% to 75% enhancement, and greater
than 75% enhancement.

For semi-quantitative analysis of enhancement kinetics, the GUI
first filtered for voxels within each ROI demonstrating signal
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Fig. 1. Screen capture from the graphical user interface (GUI). The top row displays postcontrast MRI images from all three timepoints (baseline, after one cycle of NAC, and at completion of NAC). The graphs depict time-signal intensity
curves for single voxels, chosen by the user by placing cross-hairs within the images. The middle row displays subtraction images corresponding to the slices in the top row. The bottom row contains parametric color maps representing the
shape of the enhancement curve for each voxel within the slice, with one map using a 50% enhancement filter and the other map using a 100% enhancement filter. Blue = progressive (type I) kinetics, yellow = plateau (type II) kinetics,
red = washout (type III) kinetics.
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intensity increases of either >50% or >100% over baseline following
contrast administration, thus removing any nonenhancing voxels or
voxels with low-level enhancement. Then, using the >50% and
>100% enhancement filters, the GUI automatically calculated the
percentage of voxels within each ROI exhibiting progressive (Type I),
plateau (Type II), or washout (Type IIl) enhancement kinetics [22].
Enhancement type for each voxel was designated with reference to
Slsiope for that voxel, defined as

ST e = KSI,M—SIW> /SJW} % 100%

where Sl,.qc Was the peak signal intensity during the first 120 s
following contrast injection and Sl;,;; was the average signal intensity
over the final two dynamic acquisitions. Voxels were designated as
having progressive (Type I) enhancement kinetics if Slgope Was
+10% or greater, plateau (Type II) if Sksope Was between — 10% and
+10%, and washout (Type III) if Sk;jope Was — 10% or less. In order to
minimize anomalies from spurious signal intensity fluctuations over
the course of a dynamic contrast run, the entire time-signal intensity
curve for each voxel was smoothed by a moving average filter of
length three before entering into the enhancement kinetics analysis.

2.5. Statistical analysis

A non-parametric Spearman rank correlation analysis was used
to estimate the correlation between the two radiologists with
respect to observed imaging parameters. Logistic regression analysis
was then performed in two steps. First, as a preliminary step to select
covariates, a Mann-Whitney U test was employed to examine the
median difference of continuous variables (e.g., size measurements)
between pathological responders and non-responders, and a Fisher's
exact test was used to determine the association between categorical
variables (e.g., perceived enhancement) and pathological response
or non-response. For variables found to discriminate patients with a
pCR at a p-value of less than or equal to 0.05, receiver operating
characteristic (ROC) analysis was then performed using a logistic
regression model. 95% confidence intervals for the area under the
curve (AUC) were generated based on 2000 bootstrap samples. All
data were analyzed using publicly available R version 2.11.0
statistical software.

3. Results
3.1. Patient characteristics and pathological response

A total of 21 patients completed the study. Table 1 presents an
overview of patient and tumor characteristics. Patients underwent
post-cycle 1 scanning at a median of 14 days following baseline
imaging (range: 7-28 days). At pathological analysis, 9 patients
were classified as having achieved a pCR. Table 2 provides a
summary of tumor type, scan timing, and pathological response for
all patients.

3.2. Interobserver variability

The non-parametric Spearman rank correlation analysis demon-
strated statistically significant correlation between both radiologists
for all continuous variable measurements with exception of short-
axis lesion diameter during initial phase of enhancement (p for
short-axis lesion diameter during initial phase of enhancement =
0.33, p = 0.14; mean p for all other measurements = 0.77,
median = 0.75, p = 0.00-0.02). The correlation between the two
radiologists was deemed sufficient to allow observations from both
radiologists to be averaged together for all subsequent analyses.

Table 1
Patient and tumor characteristics.
Variable Value
Number of patients 21
Patient age (years)
Mean 45
Range 28-60
Baseline tumor diameter, clinical (cm)
Mean 5.6
Range 2-12
Immunostaining
ER+ and/or PR+ 7
HER2 + (including ER+ and ER—) 7
Triple negative 7
Tumor grade
Low 3
Intermediate 6
High 12
Surgery
Mastectomy 10
Breast conservation therapy 11

ER = estrogen receptor. HER2 = human epidermal growth factor receptor 2
(ErbB2). PR = progesterone receptor. “Triple negative” = ER —/PR—/HER2 —.

3.3. Imaging parameter measurements and predictive ability

3.3.1. Pretreatment parameters
No pretreatment imaging parameters were able to discriminate
patients with an eventual pCR (p = 0.22-1.00) (Table 3).

3.3.2. Percentage change in parameters after first cycle
of chemotherapy

Change in percentage of voxels demonstrating washout kinetics
with a >100% enhancement threshold filter discriminated patients
with an eventual pCR (p = 0.04) (Table 4). ROC analysis for this
variable yielded an AUC of 0.77 (95% confidence interval, [0.53,
0.96]) (Fig. 2). Accuracy was maximized at a cutoff of 64% decrease
from baseline in percentage of voxels demonstrating washout
kinetics; at this value, sensitivity was 100% and specificity was
66.67% for predicting pCR.

No other parameter change demonstrated statistically significant

Table 2
Patient tumor type, timing of “post-cycle 1" scan, and pathological response.
Patient Tumor type Timing of “post-cycle 1" Pathological
number scan (days after response
baseline scan)

01 HER2 + 21 pCR

02 HER2 + 7 pCR

03 ER+ and/or PR+ 14 non-pCR
04 ER+ and/or PR+ 13 pCR

05 Triple negative 17 non-pCR
06 HER2 + 24 pCR

07 ER+ and/or PR+ 14 non-pCR
08 HER2 + 18 non-pCR
09 ER+ and/or PR+ 17 non-pCR
10 HER2 + 13 non-pCR
11 Triple negative 15 pCR

12 ER+ and/or PR+ 14 non-pCR
13 HER2 + 25 non-pCR
14 HER2 + 14 pCR

15 Triple negative 16 pCR

16 ER+ and/or PR+ 28 non-pCR
17 Triple negative 7 non-pCR
18 Triple negative 9 non-pCR
19 ER+ and/or PR+ 13 pCR

20 Triple negative 15 pCR

21 Triple negative 9 non-pCR

ER = estrogen receptor. HER2 = human epidermal growth factor receptor 2
(ErbB2). PR = progesterone receptor. “Triple negative” = ER—/PR—/HER2 —.
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Table 3

Analysis of pretreatment imaging parameters for discriminating pCR.
Imaging Values for patients ~ Values for patients  p-value for
parameter with a pCR without a pCR discriminating

patients with

Median Range apCR

Median Range

Lesion size (mm)

LAD (early: 26.8 159to 748 352 125t0544 .70
before 120 s)
SAD (early: 17.7 1340326 14.0 94to343 .27

before 120 s)
LAD (late: 400 s) 27.3
SAD (late: 400 s) 19.6

144 t075.7 353
13.6t036.0 13.8

13.5t055.2 .75
9.8to347 .22

Enhancement 4 3to4 35 25t04 .51
Kinetics
50% threshold
% washout 34.7 57to472 222 51t063.5 .86
% plateau 36.1 296 to 46.2 34.0 28.5t056.5 .75

% progressive  32.2
100% threshold

% washout 35.8

% plateau 36.2

% progressive  31.3

174 to 55.1 34.6 8.0to64.8 1.00

6.1t047.2 164
30.0 to 46.7 35.5
16.7t048.6 41.5

55t0484 .60
16.2t055.5 .92
93to783 .81

pCR = pathological complete response, LAD = long-axis diameter, SAD = short-
axis diameter.

predictive ability, although percentage change in long axis diameter
measured early in enhancement did approach statistical significance
(p = 0.08). Fig. 3 summarizes all of the parameter change data.

4. Discussion

In recent years, an extensive literature has emerged around
advanced imaging techniques for the prediction of breast cancer
response to NAC. Techniques currently under investigation include
volumetric ultrasonography, positron emission tomography, and
magnetic resonance imaging comprising both conventional anatom-
ic and advanced functional imaging methods [23-35]. This is an

Table 4
Analysis of imaging parameter changes (from pretreatment to after cycle 1) for
discriminating pCR.

Imaging
parameter

% change for patients
with a pCR

% change for patients
without a pCR

p-value for
discriminating
patients with
apCR

Median Range Median Range

Lesion size (mm)

LAD (early) —-17 —53to +6 —4 —34to+18 .08

SAD (early) —11 —61to+33 —12 —23to+24 .70

LAD (late) —15 —39to +10 0 —30to +18 .11

SAD (late) —12 —52to +22 -8 —23to +26 .25
Enhancement 0 —38to0 0 —17to +17 49
Kinetics

50% threshold

% progressive +49 +11to +99 +28 —39to +335 .75

(Type I)

% plateau -2 —39to+36 —13 —51to +47 .81
(Type II)

% washout —54 —84to-12 -8 —86to +50 .11
(Type 1III)

100% threshold

% progressive + 62 +26to+134 +16 —40to +336 .35

(Type )
% plateau —12 —56to+26 —19 —86to +61 .92
(Type II)
% washout —62 —90 to -26 -7 —97to +58 .04
(Type III)
Bold = statistically significant at p <.05. pCR = pathological complete response,
LAD = long-axis diameter, SAD = short-axis diameter, - = percentage decrease,

+ = percentage increase.

Sensitivity

Area under the curve =0.769

T T T T T T
0.0 02 04 0.6 0.8 1.0

1-Specificity

Fig. 2. Receiver operator characteristic (ROC) analysis for percentage change in voxels
demonstrating washout kinetics with a 100% enhancement filter.

important area of investigation because current trials are investi-
gating the use of different NAC regimens in multiple patients groups,
including patients with smaller tumors that are less amenable to
reliable evaluation by palpation. An imaging technique with the
ability to predict pathological response early in treatment could have
important ramifications for patient care, including allowing the
treating oncologist to discontinue an ineffective treatment and
substitute an alternative regimen [36].

The literature around DCE-MRI in this setting is especially rich and
varied. Investigations into DCE-MRI for the prediction of breast cancer
response to NAC have employed different DCE-MRI temporal
resolutions, data analysis methods, imaging timing relative to NAC,
and outcome variables. In general, the literature segregates into two
broad categories: studies employing fully quantitative analysis of high
temporal resolution DCE-MRI data using complex pharmacodynamic
modeling [10-14,37,38], and studies employing a variety of semi-
quantitative analyses of low temporal resolution data [15-18]. The
variation in approaches reflects the challenges of DCE-MRI protocol
design in the breast, where there are competing imperatives for high
spatial-resolution imaging (to depict lesion morphology and to
maximize sensitivity for small disease foci) and high temporal-
resolution imaging (to model subtle changes in vascular flow and
permeability). It also reflects a possible disconnection between highly
specialized centers, which may possess the expertise and dedicated
analytic resources to perform rigorous and complex pharmacokinetic
modeling, and nonspecialized clinical sites, which may have access to
such techniques only through commercially available computer
assisted detection (CAD) software. At the present time, it is not clear
how DCE-MRI should evolve and be translated into broad clinical use
for assessing breast cancer response to NAC. Advocates of quantitative
analysis of high temporal resolution data might highlight promising
data from pharmacokinetic modeling as well as studies suggesting
increasing diagnostic performance of DCE-MRI with increasing
temporal resolution [19]. Conversely, proponents of semiquantitative
approaches might point to the complexity of pharmacokinetic
modeling as potentially problematic, especially when trying to
standardize image acquisition and analysis across multiple sites in a
large-scale clinical trial; for example, a simple, semi-quantitative,
three-point signal enhancement ratio (SER) approach [16,39] was
chosen over more complex methods for use in the multi-site American
College of Radiology Imaging Network (ACRIN) 6657/Investigation of
Serial Studies to Predict Your Therapeutic Response with Imaging And
moLecular Analysis (I-SPY) trial [20].

This study was performed out of consideration that a blended
technique, employing a semi-quantitative analysis of high temporal
resolution DCE-MRI data, might offer useful early information on
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Fig 3. Box plots illustrating percentage changes from baseline to post-cycle 1 for all imaging parameters, stratified by pathological response. (A) Lesion size, long axis, early in
enhancement. (B) Lesion size, short axis, early in enhancement. (C) Lesion size, long axis, late in enhancement. (D) Lesions size, short axis, late in enhancement. (E) Radiologists'
subjective assessment of lesion enhancement, graded in quartiles (see text). (F) Percentage of voxels exhibiting progressive (Type I) enhancement kinetics with a >50%
enhancement filter. (G) Percentage of voxels exhibiting plateau (Type II) kinetics with a >50% enhancement filter. (H) Percentage of voxels exhibiting washout (Type III) kinetics
with a >50% enhancement filter. (I) Percentage of voxels exhibiting progressive (Type I) kinetics with a >100% enhancement filter. (J) Percentage of voxels exhibiting plateau
(Type II) kinetics with a >100% enhancement filter. (K) Percentage of voxels exhibiting washout (Type IIl) kinetics with a >100% enhancement filter. pCR = pathological

complete response.

breast cancer response to NAC. We adapted a straightforward method
used previously by other investigators [21] to categorize individual
voxels as having progressive (Type I), plateau (Type II), or washout
(Type IlI) enhancement kinetic curves, and we found that after a single
cycle of NAC, a reduction in the percentage of voxels demonstrating
washout (Type III) kinetics with a >100% enhancement filter was
significantly associated with pCR. Our AUC of 0.77 for this single
predictor variable compares favorably with the AUC of 0.73 found in
the ACRIN/I-SPY trial for a four-predictor variable model [20]. Other
imaging parameters in our study, including lesion size measurement

and subjective assessment of lesion enhancement, did not discrimi-
nate between pathological responders and non-responders.

Fig. 1 illustrates imaging results for a patient who achieved a pCR. In
this example, there was a subjectively appreciable decrease after one
cycle of NACin the proportion of intralesional voxels exhibiting washout
kinetics (coded red), although the lesion itself had not changed
significantly in size. At the completion of NAC, however, the lesion
had disappeared. The findings suggest that in this patient, a biological
treatment response manifested as a change in tumor vascularity that
was detectable earlier than a change in gross tumor size.
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There are a number of potential advantages to our approach. First,
the technique is simple and requires significantly less effort,
resources, and expertise than a formal quantitative analysis.
Traditional quantitative DCE-MRI analysis typically requires a pre-
contrast T1 map, accurate estimation of the arterial input function
(i.e., the time rate of change of the concentration of contrast agent in
a feeding artery), and pharmacokinetic modeling; none of those data
or analyses was employed to arrive at the results presented here.
Second, by virtue of its simplicity, this method may be more robust
to variations in scanner settings, platforms, and imaging protocols,
especially when deployed across multiple sites in a large-scale
clinical trial, although this would have to be proved systematically.
Third, a voxelwise analysis may offer the advantage of improved
depiction of tumoral heterogeneity when compared to some other
semiquantitative approaches that average parameter values across
an entire lesion ROL

We emphasize that this is a preliminary study with several
limitations owing to our small sample size. First, our study
population was heterogeneous, including patients with different
breast tumor subtypes and different treatment regimens that also
affected scan timing; our sample size was not large enough to
perform subanalyses on response prediction performance within
these subgroups. Second, our study was not powered to allow for
comparison of our semi-quantitative technique against a fully
quantitative pharmacodynamic modeling analysis, and we therefore
make no claim that one technique is superior to the other. Third,
although reduction in the percentage of voxels demonstrating
washout kinetics was able to discriminate patients with pCR from
patients without pCR, there remained some overlap between the
two groups; indeed, we note that the greatest percentage decrease in
intralesional washout voxels was observed in a patient who did not
achieve a pCR (Fig. 3), a finding that will require an explanation
before this approach can be considered ready for clinical translation.
We anticipate the results of the present study being most useful for
motivating other investigators to conduct retrospective analysis of
similar datasets and for guiding future studies.

In conclusion, we have shown that semi-quantitative analysis of
enhancement kinetics data from a high temporal resolution DCE-
MRI acquisition can predict pathological response of LABC after one
cycle of NAC. Our results demonstrate the feasibility of incorporating
a relatively simple semi-quantitative DCE-MRI analysis for early
response assessment in settings that lack the expertise and resources
for dedicated, formal quantitative analysis. These results suggest that
important early treatment response information can be obtained
from high temporal resolution DCE-MRI without the use of rigorous
pharmacokinetic modeling.
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